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Abstract 

A linear least-squares formulation of the method of 
isomorphous replacement is presented. With data 
from untwinned crystals, this approach is shown to 
be equivalent to the phasing representation developed 
by Hendrickson & Lattman [Acta Cryst. (1970). B26, 
136-143]. A general method for calculating the most 
probable phase is described and applied to the higher- 
dimensional problem of phase determination for 
twinned structures. A method for calculating the best 
phase with intensity data from twinned crystals is 
also presented. The dependences of these phasing 
procedures on the number of derivatives and accuracy 
of the data sets are evaluated in test calculations. 

Introduction 

In a structure determination confronted with twinning 
by merohedry, two options are generally available: 
either (i) the observed intensities must be corrected 
for twinning, or (ii) crystallization conditions yielding 
untwinned crystals must be found. The former is 
possible provided that the twinning fraction is 
sufficiently low (Grainger, 1969), while the latter may 
or may not be possible. If neither choice can be 
satisfied, the project is effectively stopped. The funda- 
mental problem with intensity data measured from 
twins by merohedry is that the square root of the 
observed intensities is not simply related to the struc- 
ture-factor amplitudes of individual reflections. 
Without direct knowledge of IF[, conventional 
approaches for determining phases by the method of 
isomorphous replacement (Blow & Crick, 1959) are 
not feasible. 

Inability to solve the phase problem is the basic 
stumbling block to the determination of twinned 
structures. As described below, however, the phasing 
problem may be recast in such a way as to permit 
direct calculation of the complex protein structure 
factors from isomorphous replacement data obtained 
from a partially or perfectly twinned structure. [A 
similar problem of phasing cylindrically averaged 
diffraction patterns has been treated by Stubbs & 
Diamond (1975).] With this information, electron 
density maps of the untwinned structure may be 
calculated, thus permitting the structure determina- 
tion to proceed. 
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Theoretical background 

The basic approach will be illustrated explicitly for 
the method of isomorphous replacement in the 
absence of twinning, but the extension to include 
twinning is straightforward. In an isomorphous 
replacement experiment, the intensities levi = and 
I FH, I 2 corresponding to the native and jth heavy-atom 
derivative are measured. If the heavy atoms have been 
located, the scattering factor of these groups, f~ = 
aj + ibj, may be calculated. In the absence of errors, 
the following relationship holds: 

2 2 2 FH = Fp+ f~ + 2ajA + 2biB (1) 

where A and B are the real and imaginary parts of 
the native structure factor. Since all terms except A 
and B may be calculated or experimentally deter- 
mined, (1) describes a line in (A, B) space. Ifa second 
isomorphous derivative is available, a different, but 
analogous, equation corresponding to (1) will be 
obtained. These two lines should intersect at a point 
corresponding to the correct values of A and B for 
the native structure factor. Furthermore, these values 
for A and B must be on the circle defined by the 
constraint A2+B 2= F~. These geometric relation- 
ships are illustrated in Fig. 1. 

In the absence of measurement errors, the value 
for (A, B) may be obtained by direct solution of the 
linear equations (1) (Ramachandran & Srinivasan, 
1970). Introduction of experimental errors leads to a 
more complicated situation, however, since the lines 
and circle need not intersect at a single point (Fig. 
2). This problem may be solved as follows. The heavy- 
atom equations (1) may be generally represented by 

B 

Fig. 1. Linear relationships representing the method of isomor- 
phous replacement. The phasing lines [(1)] corresponding to 
three independent derivatives are illustrated for the case of 
perfect data. The circle describes the condition A2+ B 2= F~. 
The common point of intersection indicates the native structure 
factor. 
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the system of equations: 

a l a  + biB = (F21 - F 2 - f 2 ) / 2  

=c~ (2) 
a2A + b2B = c2 

These equations may be written in matrix form: 

G x = e  (3) 

where x is the vector with components (A, B) in the 
present problem, and G is the matrix containing the 
coefficients of A, B in (2). 

A least-squares solution to these equations may be 
easily obtained, but in general it will not satisfy the 
constraint 

Ixl== A 2 + B 2= F 2. (4) 

Instead, we wish to find the point on the phase circle 
which best satisfies a least-squares error function 
determined by the linear equations (1). 

For every point in the A, B plane, the error function 

e2(A, B ) =  E [Ifjldj(A, n)]  2 (5) 
J 

assigns a value determined by the sum of the squared 
weighted distances from the lines [(1)] to the point 
in the plane. The distance to each line, dj, is weighted 
by the magnitude of the heavy-atom contribution, Ifjl, 
for that derivative. When reduced to a function of 
phase angle alone, (5) is equivalent to the error func- 
tion described by the lack of closure based upon 
intensities. This equivalence can be demonstrated by 
showing that identical expressions for the Hendrick- 
son & Lattman (1970) coefficients may be obtained 
for the two error functions (Appendix I). Equation 
(5) is therefore an appropriate error function. 

Determination of  the most probable phase 

The most probable phase is identified by the point 
on the phase circle for which the error function (5) 
is a global minimum. A geometrical interpretation of 
the problem may be developed as follows. The con- 
tours of a linear least-squares function in the plane 
form a family of ellipses. For points on the phase 
circle at which the error function is a local extremum 

Fig. 2. The same relationships as Fig. 1, but for imperfect data. In 
this case, the phasing lines will not intersect at a single point 
on the phase circle. 

(along the circle), the contour of the error function 
must be tangent to the circle. A maximum of four 
such points may be present, as shown in Fig. 3. 

An analytical determination of these points is pos- 
sible using Lagrange multipliers. Therefore, we 
require the gradient of the error function to be propor- 
tional to the gradient of the constraint condition: 

G T G x -  GTe = Ax (6) 

where 2A is the Lagrange multiplier, and the gradient 
of the error function (5) is 2 G r ( G x - c ) .  Forcing the 
solution to satisfy the constraint (4) is equivalent to 
assigning all errors to the derivative data. Values of 
x satisfying (4) and (6) will represent extrema to (5) 

• along the constraining circle. 
To solve for x, the following coordinate transforma- 

tion step is employed. Let E be the matrix composed 
of the column eigenvectors of GrG.  Since the eigen- 
vectors are orthonormal, multiplication by E or E r 
performs a simple coordinate rotation. If x ' =  Erx,  
then [x'l = Ix I. Introduction of the identity factor EE r 
and premultiplication by E r in (6) gives: 

E r ( G r G ) ( E E r ) x -  E r G r c  = AErx (7a) 

E r ( G r G ) E x ' - n  = Ax' (7b) 

D x ' - B  = Ax' (7c) 

where B = E r G r c .  Since E r and E diagonalize GrG,  
D = ETGrGE is the diagonal matrix composed of the 
eigenvalues of GrG.  Equation (7c) may be solved 
for x~: 

X~ = n i l  ( D,, - A ). (8) 

Recall Ix'12 = Ix12= F~. Imposing this condition upon 
(8) leads to the relationship: 

T'I 82 1-I ( D j j - A )  2 = F  2 ]-I (Dkk--A)  2 (9) 
" =  j ~ i  k = l  

where N is the dimension of the vector x. Equation 
(9) describes a polynomial in A of degree 2N, which 

B 

Fig. 3. Error ellipses corresponding to the error function (4). For 
points on the phase circle at which the error function is a local 
extremum, the elliptic contours of the error function will be 
tangent to the circle. 
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may be solved by standard numerical methods. Sub- 
stitution of each value into (8) yields x'~, and the 
minima may be identified from (5). 

If the G TG matrix is degenerate (as in the single 
isomorphous replacement case), then some of the 
eigenvalues D, and the corresponding B~ will vanish, 
and the value A =0  will be a degenerate solution. 
Under these conditions, not all of the x~ are indepen- 
dent, and multiple minima solutions occur. In the 
SIR case, two equally probable solutions exist, corre- 
sponding to the non-tangential intersection of a line 
with a circle. In this situation, either phase solution 
is possible, and an average of the two minima may 
be selected. 

In addition to isomorphous replacement data, 
linear equations of the form (1) may be obtained from 
anomalous-dispersion measurements and molecular- 
replacement data. 

Application to twinning 

In the case of twinning by merohedry, the twinning 
operation exactly superimposes non-equivalent 
reflections from the twin domains. In the simplest 
case of twinning by hemihedry, two crystals are 
present in the twin. The following analysis will 
describe a phasing procedure which is valid for 
intensity data measured from hemihedral twins, 
although it may be generalized to other types of 
twinning in a straightforward manner. For the case 
of twinning by hemihedry, the observed native 
intensity is the weighted sum of intensities from the 
two twin-related reflections I~ and 12: 

I N = a I , + ( 1 - a ) I 2  (10) 

where a is the volume fraction of twin 1. The observed 
intensity for the j th derivative, IH,, is given by 

I, ,  = fl( I~ + f], + 2aj~A, + 2bj,B~) 

+(1-/3)(I~+f]2+Zaj2A2+2bj2B~) (11) 
where/3 is the volume fraction of twin 1 of derivative 
j. a and /3 may be estimated through a variety of 
methods (Britton, 1972; Murray-Rust, 1973; Fisher 
& Sweet, 1980; Rees, 1982). If a or /3 =½ (perfect 
twinning), then a single equation, linear in terms of 
the native structure-factor components (A~, B~, A2, 
B2), is obtained: 

IHj = IN + f 2~/2 +f22/2 + ajlA1 

+bj,Bl+aj2A2+bjzB2. (12) 

The magnitude constraint for the case of perfect hemi- 
hedral twinning is 

(AZ+B~+A~+B~)/2=IN. (13) 

When neither a nor/3 is equal to ½, two independent 
equations, similar to (12), are obtained from each 
derivative (Appendix II). 

The phasing problem in the presence of twinning 
by hemihedry is four-dimensional. The corresponding 
geometric interpretation is to describe the intersection 
of hyperplanes with a hypersphere in four-space. This 
generates an eighth-order equation in A analogous to 
(9). Identification of the appropriate minimum (or 
minima) then generates the A's and B's correspond- 
ing to the most probable phase. Four or more 
independent phasing equations are required to 
specify a unique point on the hypersphere. If the 
native and derivative crystals are perfectly twinned, 
four independent isomorphous derivatives are 
needed. For the partial twinning case, two derivatives 
are sufficient to determine uniquely the most probable 
phase. However, calculations on test data (described 
below) show that phases of moderate quality can be 
obtained from fewer than four phasing equations. 
(This is analogous to SIR phasing in the absence of 
twinning.) 

Determination of the best phase for 
perfectly twinned structures 

Since the pioneering studies of Blow & Crick (1959), 
Fourier syntheses have generally been calculated 
using 'best' coefficients. These coefficients are defined 
by the centroid of the structure-factor probability 
distribution. 

For the case of perfect twinning (a = ½), the points 
(AI, B~, A2, B2) which satisfy the constraint of (13) 
describe a hypersphere. Any point on this hyper- 
sphere may be described by three angles (2', 6, ~-) 
using the following definitions. 

2' = phase of twin 1 = tan -~ (B~/A~) 
0 <-y<27r (14a) 

6 = phase of twin 2 = tan- 1 (BE/A2) 
0-< 6 <27r (14b) 

r = t a n  -1 (IF~I/IF21) 0-< z<_ 7r/2. (14c) 

Conversely, 

A~ = (2IN) 1/2 sin ~" cos 2' (14d) 

BI = (2IN) 1/2 sin ~" sin 2' (14e) 

A2 = (2IN) 1/2 cos ~" cos 6 (14f) 

B2 = (2IN) 1/2 COS Z sin & (14g) 

We now define a lack of closure in four-space, based 
upon intensities, as: 

ej( 2", 6, T)= ln - (A~ + aj l )2/2-(  B1 + bj~)2/2 

-(A2+aj2)2/2-(B2+bj2)2/2 (15) 

where A~, B~, A2 and B2 can all be expressed as 
functions of % 6 and ~'. The lack-of-closure error 
function e](2", 6, ~) can be shown to take the form 
of a truncated Fourier series (Appendix III). The 
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Table 1. Accuracy of the most probable phase in the 
degenerate case 

% error represents the random error introduced into the derivative 
intensity data. Aa is the average phase error in degrees. 

Number of 1% error 4% error 
derivatives Aa Aa 

1 61 "9 63.0 
2 44.5 47.9 
3 27.4 35"6 

arguments of the sine and cosine terms are linear 
combinations of y, 8 and r. For each pair of twin- 
related reflections, 18 real Fourier coefficients are 
required to describe completely the squared closure 
error over the hypersphere. When data from four or 
more derivatives are available, storing the phase prob- 
ability distributions in this form requires less space 
than storing derivative intensities and heavy-atom 
scattering factors separately. When computer storage 
space is not a concern, it is unnecessary to expand 
e2(y, 8, r) as a Fourier series, since ej(y, 8, ~') may be 
computed directly from (14) and (15). 

The probability distribution, based upon a single 
derivative, may be given by 

Pj(y, 8, r)=Njexp[-ef.(y, 8,'r)/EEj] (16) 

where /Vj is a normalization constant and Ej is the 
e.s.d, in errors for derivative j. The total probability, 
as a function of y, 8 and z, resulting from multiple 
derivatives, is given by the product of the Pfs. 

P(y, 8, r ) = N  exp { - ~  [e2(y, 8, z)/2Ej]}. (17) 

Therefore, the corresponding coefficients from all 
available derivatives may be summed to give a com- 
plete description of the total probability distribution. 
Following Hendrickson & Lattman (1970), calcula- 
tion of the best structure factor requires evaluation 
of the following five integrals: Q't /s in r cos Yl 

Q2 [ sin ~" sin y | 

=ffl tcos,cos / 
Q4 kC°Sl sinS] 
Q5 

XP(% a, ~') sin r cos r dy da d~', (18) 

where sin ~" cos z dy d8 d r  is the integration element 
for a hyperspherical surface in our orthogonal curvi- 
linear coordinate system. These integrals may be 
approximated numerically. The final structure factor 
would be given by 

B1 Q2 
A2 =[(2IN)1/2/Qs] Q3 " 

B2 Q4 

(19) 

[The problem of determining the best phase for the 
case of partial twinning may be treated by generaliz- 
ing (15) to be the sum of the squared errors in 
equations (B3a) and (B3b) in Appendix II.] 

Test calculations for the case of  
perfect hemihedral twinning 

Atomic coordinates for the complex between car- 
boxypeptidase-A and a protease inhibitor from 
potatoes (CPA-PCI) (Rees & Lipscomb, 1982) were 
used to calculate structure factors between 20.0 and 
4.5/~. In addition, five different derivative data sets 
were generated by introducing a single mercury atom 
at arbitrary positions in the asymmetric unit [(0.23, 
0.33, 0-10), (0.42, 0.61, 0.26), (0.12, 0.30, 0-03), (0.68, 
0.66, 0.16), (0.26, 0.21, 0.28)]. The average R factor 
on I FI between native and derivative data sets was 
8.0%. The space group for the CPA-PCI complex is 
P32. The crystals grow as twins, with a [1120] twin- 
ning axis. To simulate data from a perfectly twinned 
crystal, intensities of twin-related reflections were 
averaged so that Ihkt = Ikhr. Approximately Gaussian 
errors were introduced into the derivative intensities. 
Fortran programs were written to calculate the most 
probable phase and the best phase from perfectly 
twinned data. The programs used subroutines from 
the IBM Scientific Subroutine Package and were 
implemented on a VAX 11/780. 

For fewer than four derivatives, the most probable 
phase solution is degenerate. Calculations were per- 
formed with one, two and three derivatives. For each 
reflection, the degenerate solutions were identified 
and averaged (as in the conventional SIR case). The 
average absolute phase error (Aa) was calculated 
between the known and most probable phase sets 
(Table 1). With three derivatives, the phase error 
averages approximately 30 ° (depending on the size 
of the error introduced into the derivative intensities). 
Even with one derivative, the calculated phases are 
still systematically biased towards the correct phases. 

For more than three independent derivatives, the 
most probable phase solution is unique. The average 
phase error (Aa) and R factor on IF[ (between the 
known structure-factor amplitudes and the calculated 
amplitudes) were calculated for four and five deriva- 
tives (Table 2). The best phase was also determined 
for four and five derivatives. The average phase error 
and R factor for the best phase method are given in 
Table 3. The integrals of (18) were evaluated by 
sampling the hyperspherical surface at 10 ° intervals 
for the three angles. The lack-of-closure error was 
computed directly from (14) and (15). Calculations 
of the most probable phase were based upon 1136 
pairs of twin-related reflections. Calculations of the 
best phase were based upon 100 pairs of twin-related 
reflections. For both methods, the accuracies of the 
phase and amplitude estimates improve as the number 
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Table 2. Accuracy of the most probable phase in the 
non-degenerate case 

% error represents the random error introduced into the derivative 
intensity data. Aa is the average phase error in degrees. R(%) is 
the R factor on I FI between the known and calculated structure- 
factor amplitudes. 

Number of 1% error 4% error 
derivatives Aa R (%) Aa R (%) 

4 9.2 8.5 24.9 19-9 
5 5.1 5.6 18.4 16.9 

Table 3. Accuracy of the best phase in the non-degen- 
erate case 

% error represents the random error introduced into the derivative 
intensity data. Aa is the average phase error in degrees. R(%) is 
the R factor on I FI between the known and calculated structure- 
factor amplitudes. 

Number of 1% error 4% error 
derivatives Aa R (%) Aa R (%) 

4 10-8 9-2 24-7 19-4 
5 4.8 5-6 17.2 16-4 

of derivatives increases and the error in the derivative 
data decreases. With data from four derivatives (per- 
fectly twinned) and 4% intensity errors, phase errors 
of less than 25 ° and an R factor below 0.2 may be 
achieved. Although the best-phase algorithm provides 
slightly better results, this advantage is offset by the 
increased computer time (approximately a factor of 
50) required to calculate the best phase, relative to 
the most probable phase. 

Concluding remarks 

The least-squares formulation of the method of 
isomorphous replacement provides geometrical 
insight into the phase problem, and can be directly 
extended to the higher-dimensional problem of phas- 
ing twinned structures. The most probable phase may 
be determined rapidly by the method of Lagrange 
multipliers. Calculation of the best phase for twinned 
structures is accomplished by expressing a four- 
dimensional lack-of-closure function in terms of three 
hyperspherical angles. With these methods, the tech- 
nique of isomorphous replacement may be used to 
determine phases for twinned structures, even in the 
case of perfect twinning. 

This work was supported in part by USPHS grant 
GM31875 and USPHS NRS award GM07185 to TOY. 
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Fig. 4. Phase circle diagram illustrating the relationships between 
structure-factor amplitudes and phase angles described in 
Appendix I. 

A P P E N D I X  I 

Equivalence of a linear least-squares error function to 
the lack-of-closure error 

Let 0 =phase of the heavy-atom contribution (fj), 
~o = possible choice for phase of the native structure 
factor (Fp), g = shortest distance from the origin to 
the line defined by the points of intersection of the 
two circles (Fig. 4). 

From Fig. 4, 

d2=[Fp cos (~o- 0 ) - X ]  2 

= F~, cos (2¢ - 20)/2 + F~/2 

- 2 F p  cos (~o - O)x+X 2. (A1) 

Since 

F%-X 2= F%- (Ifjl +X) 2, (A2a) 

x (F~, 2 = - F~-f;)/(21fjl). (A2b) 

Equations (A1) and (A2b) give 

d 2 = F 2 {cos (2~0)[cos 2 0 - s i n  2 0] 

+sin (2~o)2 cos 0 sin 0}/2 

+ Fp( F~ + f ~ -  F2n) 

x (cos ¢ cos 0+sin  ~ sin e)/Ifj I 

+(F~ F~ ~ - - f j )  / (4f j )  + F2/2. (A3) 

If we let e2(q~)= [Ifjld(~o)] 2 [(5)], then 

Fp(a~-b}) cos (2¢ ) /2+  F~ajbj sin (2~,) 

+ F ~ (  2 ,2 Fp+ f j -  F2n)aj cos 
+Fp( 2 2 Fp+ f j -  F2n)bj sin ~o 

2 '2 2 :2 
+ [ 2 F p f ~ + (  (A4) Fp+fj -F2)2]/4 .  

These coefficients are proportional, by a factor of ~, 
to those obtained by Hendrickson & Lattman (1970) 
for the lack-of-closure error, based upon intensities. 
In short, the lack-of-closure error, 

X [F%-I(Fe +fj)[2] 2, 
J 

is equal to 

4X [I~IaA~)Y. 
J 
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Since the constant factor does not alter the positions 
of the extrema or the probability centroid it will not 
affect either the most probable phase or the best 
phase. 

APPENDIX II 

Linear isomorphous replacement equations for the 
case of hemihedral twinning with arbitrary 

twinning fractions 

In the case of hemihedral twinning, the two crystal 
intensities (I1 and 12) related by the twinning 
operation contribute to two different observed 
intensities, designated IN- and IN+. (These two 
observed intensities are equal in the case of perfect 
twinning.) 

IN+ = aIl + (1-- a)I2 (B la )  

I N _ = ( 1 - - a ) I i  + aI2 (Blb)  

where a is the twinning fraction of the native speci- 
men. For a derivative with twinning fraction/3, 

In+ = fl(11 + f2 + 2alA,  + 2blB1) 

+(1-fl)(IE+fE+2aEAE+2b2B2) (B2a) 

iu_ = ( l _ fl )( i1 + f2 + 2a,Al + 2b1B1) 

+ fl(12 +f2 + 2aEA2 + 2 b2B2). (B2b) 

From these equations, we can obtain two independent 
linear equations in A1, B1, A2 and B E" 

In+ = IN+(a + fl - 1)/(2a - 1)+ IN_(a - fl)/(2t~ - 1) 

+ flf2 + ( 1 -  fl )f2 + 2flalAl + 2flbl B1 

+ 2(1 - /3 )a2A2 + 2(1 -/3 )b2B2 (B3a) 

and 

In_ = IN+( o~ - fl )/  (2a - 1)+ IN_( a + fl - 1)/(2a - 1) 

+ (1 _ fl)f2 + fifE+ 2 ( 1 - f l ) a l A l  + 2(1- f l )b lB1 

+ 2fla2A2 + 2flb232 . (B3b) 

These equations may be used to determine the most 
probable phase (as described in the text). When/3 = ½, 
(B3a) and (B3b) are identical and reduce to (12). 
When a =½, these equations cannot be evaluated. 
Equation (12) still holds, however, with In- -  
(In++ In_)~2. Therefore, two phasing equations are 
obtained per derivative when neither a nor fl are 
equal to ½. Otherwise, only one phasing equation is 
obtained per derivative. 

When a is near ½, measurement errors are amplified 
by solving for I~ and I2 directly from (Bla )  and 
(Blb)  above (Grainger, 1969). This problem is 
minimized in the present treatment, however, since 
the most probable structure factor is not required to 
satisfy (B la )  and (Blb)  exactly. For the partial twin- 

ning case, the most probable structure factor must 
only satisfy the total magnitude constraint 

AI+B1+E 2 A 2 + B  2 = 11+12 = IN++IN- (B4) 

as well as (6) in the text. 

APPENDIX III 

Fourier coefficients for the lack-of-closure error in the 
case of perfect twinning by hemihedry 

From (14d)-(14g) and (15) in the text, it can be 
shown that the lack-of-closure error function, 
e2(% 6, r), takes the form of a finite Fourier series in 
the hypersphefical angle variables % 8 and r: 

2eE(y, 6, r ) =  IN(a 2 + b 2 -  a 2 -  b~) cos (2r) 

+ IN(a 2 -  b 2) cos (2y)+ 2INalbl sin (2y) 

+ IN( a 2 -- b22 ) cos (26) + 2INa2b2 sin (26) 

- Xb~(2IN)I/2 cos (r + y) + Xa,(2IN)I/2 sin (r  + y) 

+ Xb,(2IN )1/2 cos ( r -  y) + Xa,(2IN ),/2 sin (r--  y) 

+ Xa2(2IN) 1/2 COS (r+ 6) + Xb2(2IN) '/2 sin ( r +  8) 

+ Xa2(2IN)1/2 COS (r-- 6) -- Xb2(2IN)'/2 sin ( r -  6) 

--[IN(a 2 -  b2)/2] cos (2 r+  2),) 

- INa,bl sin ( 2 r + 2 y )  

--[IN(a 2 -  b2)/2] c o s ( 2 r -  2y) 

+ INalb, sin ( 2 r - 2 y )  

+ [IN(a 2 -  b2)/2] cos (2 r+  26) 

+ INa2b2 sin (2 r+28)  

+ [IN(a22- b2)/2] cos ( 2 r - 2 6 )  

- INazb2 sin ( 2 r - 2 6 )  

- IN(bla2+ alb2) cos (2 r+  y +  6) 

+ IN(alaE-blb2) 

- IN(b, a2 -  aab2) 

+ IN(ala2+ b, b2) 

+ IN( b la2-  aab2) 

+ IN(alaE + b, b2) 

+ IN(bla2+ a,b2) 

sin (2 r+  y +  6) 

cos (2 r+  y -  6) 

sin (2 r+  Y -  6) 

cos (2r - y + 8) 

sin ( 2 r -  y +  6) 

cos ( 2 r -  y - 6) 

+ I N ( a l a 2 - -  bib2) sin ( 2 r -  y -  6) 

+ IN(a 2 + b 2 + a~ + b 2) + X2/2  (C1) 

where X is defined as 

2IN+ a2+ 2 2 b, + a2+ b 2 -2 In .  

In the expression above, only 18 of the 30 terms have 
unique coefficients. 
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Abstract 

Patterson and Fourier methods applied to one- 
dimensionally modulated structures in the (3+ 1)- 
dimensional space R3+1 can be very helpful tools 
for the calculation of starting parameters of the atomic 
modulation functions. The characteristics of the 
(3+ 1)-dimensional Patterson function [(3 + 1)-PF] 
are discussed for some typical modulation waves from 
a geometrical point of view as well as with the aid of 
known modulated phases. The influence of series 
termination errors, resulting from incomplete data 
sets, is demonstrated. The (3+I ) -PF ,  in any case, 
yields sufficient basic information even if first-order 
satellites only are accessible. Of course, it is necessary 
to include higher orders if one wants to learn some- 
thing about the shape of the modulation wave. A 
comparison is made with the Patterson methods used 
for the solution of modulated structures until now, 
and it is shown that they are special cases of the 
(3+ 1)-PF. Some applications are given for Fourier 
methods in R3+1, for example, to detect fluctuations 
of the phase or the amplitude of the modulation wave. 

1. Introduction 

In recent years an increasing number of commensur- 
ately and incommensurately modulated structures has 
been determined. In general the solution of the 
average structure presents no difficulties, but it can 
be problematical to find workable starting parameters 
for the refinement of the atomic modulation func- 
tions. Direct methods are available for superstruc- 
tures (cf. e.g. B/Shme, 1982) but there is no incom- 
mensurately modulated structure known to the author 
which has been solved using them, and the usual 
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Patterson methods are hardly interpretable for more 
complicated cases. Consequently, most of the modu- 
lated structures have been solved based on model 
considerations or in a rather straightforward way (cf. 
e.g. Horst, Tagai, Korekawa & Jagodzinski, 1981; 
Yamamoto, Nakazawa, Kitamura & Morimoto, 1984; 
Steurer & Adlhart, 1983a, b). However, there have 
been many attempts to apply Patterson techniques to 
get information independent of models. The most 
frequently used way is to describe the incommensur- 
ate modulation in a commensurate supercell, approxi- 
mately, and to calculate the 'partial '  or 'difference' 
Patterson synthesis using the superstructure reflec- 
tions alone (cf. e.g. Frueh, 1953; Tak6uchi, 1972; 
B6hm, 1978; Tomeoka & Ohmasa, 1982). As a result 
the Patterson map of the 'complementary'  structure, 
the difference between the real modulated structure 
and the average structure, is obtained. 

Another method has been derived by Toman & 
Frueh (1973a, b) by calculating the Patterson syn- 
thesis in the subcell using 'one set' of satellite reflec- 
tions. The 'plus and minus" difference Patterson func- 
tion (McConnell & Heine, 1984) is a similar approach 
and has been used primarily to obtain symmetry 
information. A detailed discussion of all these 
methods will be given in § 5 of this paper. The purpose 
of this study is to discuss the properties of the 
(3+ 1)-PF for some fundamental modulation func- 
tions and to give an aid to the application of this 
method in practical structure determination. For the 
sake of a clear representation plane modulation waves 
with equal amplitudes are investigated in the first 
place, but the (3 + 1)-PF is interpretable in more gen- 
eral cases as well. Naturally, in the case of asymmetric 
functions of very different shape the definition of a 
phase relation between two modulation waves will 
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